Linux vs. Standards

BY ALEXANDRU LAZAR

Email: std@cwazy.co.uk
Web: http://donkey.50webs . com

September 8, 2005

1 Running by standards

Standards are one thing we can barely live without today. Most of our life is standardized, and
we often impose ourselves the usage of a standard, even without knowing it. The coffee you dink
in the morning is a self-imposed standard. The tea I drink in the morning is a standard I
impose myself. My morning would seem strange if it didn’t start with a mug of Royal Ceylon
tea, in the exact same way my nights would seem dull without Irish Cream. Even the recipes of
these brands are standard. I already know how the Royal Ceylon tea should taste, because I
know what it contains. And you will find standards anywhere — in the car you drive, in the com-
puter you use every day, and even the language I use to typeset this text is a standard. TeX.

Why do we need standards? There are more reasons, and many depend on the domain where
the standards apply. For example, in Romania, where I live, all the plugs supply 220V. If they
weren’t standardized, you could end up needing a whole bunch of adaptors for your machines
and, with enough bad luck, you may even fry a few. In England, all cars drive on the right to
avoid traffic jams. But since I’'m talking about Linux and standards, I'll try to keep the range a
bit more narrow. I don’t really care where the steering wheel is on my Linux box. Oh, wait, it
doesn’t have any, maybe another kernel module should be written for it ;-).

Without trying to make an encyclopedia of reasons, here is why standards are so needed
when talking about computers:

e Interoperability. This is one of the most serious reasons, and the top example is the
one featuring TCP/IP and endianness. Computer processors fall into two large cate-
gories: little endian and big endian. The difference is how the data is stored. When
storing a sequence of bytes, some processors (like the Motorola 68000 family) store the
most significant byte first. For example, on a 16—bit big—endian CPU the hexadecimal
value A3FF2DE1 (which requires 32 bytes to store) would be stored: A3 FF 2D E1 at
consecutive memory locations. However, others, like the x86 family of CPUs, store it the
other way: E1 2D FF A3. It’s not a problem on a single machine (in fact, some proces-
sors can switch modes, and become either big endian or little endian). But, in the early
days of TCP/IP, this was a problem. A sequence of bytes sent by a little-endian-operated
machine would end up reversed on a big-endian-operated machine. Anecdotically, his was
discovered when trying to port UNIX from the PDP-11 (little-endian) to the x86, and
when the PDP-11 sent the string UNIX, the x86 ended up with NUXI. The solution was
easy: TCP/IP standardized a single method of encoding binary data in a packet. All data
sent using TCP/IP is big-endian, and everyone receiving it can expect it to be like this
and convert it if necessary.

e Portability. When the computer market consisted of 4 to 6 computers, this wasn’t a
problem. However, today things have changed radically. A computer no longer serves a
single purpose, and you may expect a software package to be available on more architec-
tures. It’s obvious that you cannot expect all computer architectures to be similar. The
first wide-used solution was the C language. Instead of writing all software using
assembly-language, specific to every computer architecture, a minimum of it is written
specifically for the machine, and the rest is written in a more high-level, universal lan-
guage. The compiler would translate C code to machine-specific code and, if the code is
cleanly written, in some cases a simple recompilation on a platform is enough to run soft-
ware initially written for another one. The C language itself has been standardized a few
times, so that different implementations of C could be unified, allowing for an even
greater portability.

2 SECTION 2

e Mobility. While the usage of laptops is becoming more and more of a trend, you can
still expect one to be forced to use a computer he doesn’t own. Of course, you cannot
expect all computers to behave the same, but some things should remain the same. In
the case of Unix for example, which happens to be a standard itself, it’s safe to assume
that you can get a list of the files in a directory with the Is command or that you can
view a file on the standard output using the cat command. To a certain extent, you can
expect all desktop environments to provide at least a simple text editor, an image viewer
if the hardware underneath allows it and so on. Sure, diversity is one of the reasons why
we all love computers (and a direct consequence of innovation), so it should not be dis-
couraged, but at least it should not go as far as giving you a bottle beer when you asked
for a cup of coffee.

e Adaptability. For many of us, adapting to a new working environment is not something
too hard to do. For example, despite being a fan of emacs, I easilly got used to NEdit
when I had to, and while being an astute fvwm user I didn’t mind working on a Gnome
environment. However, this is not the case for everyone. Again, diversity is not to be
condamned, but an environment should not work against the one who is trying to use it.
It is why many standard Unix distributions (Solaris, HP-UX, AUX, you name it) ship
with CDE as a desktop environment. CDE has been a de facto standard for a long time.
When you don’t have others, de facto standards will suffice I guess. Some (like Solaris)
even include other environments on the standard CDs you get when obtaining the oper-
ating system, and you’re free to install them if you want, but you still get the choice of
CDE. This way, if one is suddenly forced to use a HP-UX workstation instead of a
Solaris workstation, he will still find the desktop environment he is used to. As a side-
note, some commercial Unix developers announced they would phase out CDE replacing
it with Gnome. HP returned to CDE eventually.

e Strong base for future development. Standards provide a way of “freezing” tech-
nology to a certain point. When an environment has reached maturity and further
improving it require a great deal of effort, or maybe a change of perspective, having a
stable foundation to rely on is a must. Imagine the hell Unix desktops would have been
now if, instead of having the X protocol and its various (bloated, slow, whatever) imple-
mentation, we would have had a few different protocols. While there were certain
attempts at it (Sun’s NeWS for example), they failed to make it to the “big outside”.

These are the strongest arguments I can give. While I do have many others on my mind, the
ones I listed above are the ones that cover the widest possible range and apply to most users.

2 The Unix standard

Earlier, I remotely mentioned Unix was a standard. Rise two fingers all of you who thought it
was an operating system.

Well, historically speaking, you are half right. Sintactically speaking, you are only 33.33%
wrong. Unix used to be an operating system. Now there are more Unices. A few dozens to be
remotely precise. Unix is also a standard of the Open Group. And, Unix is also a trademark,
which is why we don’t have a few dozens of systems called Unix. We just have a few Unices
(because the Unix name itself changed its owner several times) having the name of Unix, and a
lot of other operating systems who comply Open Groups’s standards. Some of them (like
Solaris) are comply those standards well enough to be certified as Unices.

Is Linux a certified Unix? The short answer is no. The long answer is no, but there are stan-
dards for Linux as well. The even longer answer is: no, and despite the fact that there are stan-
dards for Linux as well, they have been developed by a small number of companies, so nobody
seems to bother except for those who agreed upon them. These standards were published under
the name of Linux Standard Base or LSB. Many laughed at it, asking if it took them long to
decide upon what is the Least Significant Byte (also abreviated as LSB). The reason? It didn’t
solve too much.

‘WHERE DO WE NEED STANDARDS? 3

3 So what’s wrong with LSB?

The Linux Standard Base seemed like a very nice initiative at first. However, it ended up as
something on the narrow margin between failure and acceptance. Many of the standards it
describes were already long being implemented even without being standardized, simply because
they happened to be the best solution. Other standards seemed to bluntly reflect the marketing
policies of those who developed them, especially since the sugestions of those who weren’t
involved (Debian being the biggest name) were easily discarded. One example is the RPM
format, which was standardized as the universal package format for software distribution. Many
voices criticized this, since RPM doesn’t allow for the general compatibility and platform-inde-
pendence offered by other package managers and, at the same time, it lacks many features
which are present in other package managers. Many voices rised against this choice. While
many of those who revolted were not really getting the point (RPM isn’t supposed to be the
package manager of all LSB-compliant distributions, it’s just the package format supposed to be
used by 3rd party software vendors), the fact that an inferior solution was chosen remains.
The LSB also fails to address other problems, which seem to be even more bothering.

4 Where do we need standards?

Freedom of choice has always been an issue with open source. Linux is so special because it is
open source. And most of the software you’d expect to run on a Linux platform is open source.
In my case, the only closed-source piece of software I'm using is NVidia’s binary driver for my
graphics card.

One thing that has been said about standards is that they harm the freedom of choice. They
don’t. A standard doesn’t meen you absolutely have to use a certain program, just that using it
would guarantee its interoperability, its integrity and its coherence on all platforms that run it.
You may use whatever alternative you want, but they won’t provide these guarantees.

Standards in open source are rather hard to impose. When we’re talking about standards at
a small scale, it seems less troubling. For example, Free Desktop’s standards are already being
used by Gnome and KDE, the big players in Linux desktop environment. However, when talking
about a scale as large as the one a complete Linux distribution implies, things do change radi-
cally.

4.1 The desktop environments

Linux (and Unix in general) offer a very wide range of choices in this area. This is not some-
thing that has to do with Linux in particular, but more with choices in X11’s design.

X11 never tried to impose anything except for a protocol to those who were developing. This
means that the X desktop environments offer a great deal of diversity. Desktop environments
solve many problems, because they don’t roll out just a workspace, they also bring some usual
applications, hardware configuration utilities and so on. However, they do have some problems:

4.1.1 Coherence

The X11 environment doesn’t even impose a widget set. While the Athena widgets and the twm
(Tabbed Window Manager) ship with it nowadays, they are hardly what I call a support for a
good desktop environment. Many alternatives were developed, but they are not similar in many
places. The most eye-cutting of them all is aspect. You will instantly know a Motif application
from a GTK application, and while Motif is a standard of Open Group, it is not widely used in
Linux.

Some toolkits implement different approaches to how widgets look and perform. Using the
scrollbars in applications with Athena widgets is different from using scroll bars in GTK-based
applications. Some toolkits may refuse to work with the scroll wheel of your mouse. And all
these, if you can live with the fact that you may have applications that look in totally different
ways.

4 SECTION 4

This is having a negative impact on the user. It’s like you were driving a car, and the
steering wheel’s shape would suddenly change from round to square, the seats would be painted
red while the floor would be painted blue and the acceleration pedal would look like a brake
pedal. All these give a feeling of unreliability and inconsistence.

Changing this sittuation wouldn’t be that difficult. In fact, my KDE/Qt-based apps look
just like my GTK-based apps on my system. I easily achieved that by applying the same theme
for these toolkits, since many modern widget sets have support for theming. However, this is left
to be the packager’s job. If major toolkits (at least Qt and GTK) could agree upon one common
theme to use by default, the system would get a much more consistent look out-of-the-box.

4.1.2 Common applications

All desktop environments come shipped with at least a small number of basic applications.
However, despite being called “common”, they aren’t so common.

Of course there’s not much to worry about when you write a program to handle, say, net-
work configuration. However, just making the applications themselves look and behave the same
among the desktop environments would be a good thing. Closing the general gaps in terms of
usability between major desktop environments would not harm the environments themselves
(they can still stay unique without giving a new example of how a Set Wallpaper dialog should
look like). Certain points really need addressing — for example, if you don’t know how the text
editor KDE just installed on your system is called, you may end up not being able to edit your
files if you don’t have a menu entry. Having a standard symlink named “text-editor” that is
linked against whatever the default text editor is just one of the posibilities.

4.1.3 The environments themselves

Right now, there are two big players in this game: Gnome and KDE. While I’'m not a big fan of
either (I use fvwm), their leading position is well-deserved.

Since they are now both widely accepted, many distributions end up as being either KDE-
centric or Gnome-centric.

In the case of commercial Unix distributions, CDE has been a de-facto standard. It wasn’t
really imposed, it’s just that it became so widely accepted that commercial Unices started ship-
ping with it. The result was that changing the Unix vendor would normally have a minimum
impact on the desktop. Sometimes, this is not the case with Linux. Changing Ubuntu for
KUbuntu not only causes a new desktop environment to roll out, but also another PDF viewer,
another media player, another IDE maybe and so on.

Standardization in this area wouldn’t touch old-time users. Gnome fans would remain
Gnome fans and KDE fans would remain KDE fans. However, new users would at least have a
starting point when choosing from the incredible multitude of environments.

Choosing one would obviously be a problem. Gnome is completely GPL, but it’s often
chaotic, unsupported and unstable. KDE on the other hand is always stable and consistent, but
it’s blamed for being horribly slow and, being based on Qt, there are some licensing problems.

Individual window managers don’t count up as desktop environments. Sure, there are
window managers so capable that they can end up not needing something like Gnome (take the
case of WindowMaker or fvwm, for instance). However, they don’t provide a complete environ-
ment — they just provide window management and maybe some GUI-related configuration
options.

4.2 Multimedia

Multimedia is becoming a very serious issue, as Linux is being more and more used as a desktop
platform. In this area, I believe much could be learned from Apple’s Mac OS, which is a Unix
for desktops, in the same way that Linux is. Okay, maybe Linux is in fact an almost-Unix for
the desktops but that doesn’t change it.

The fact is, Linux still doesn’t have a standard video player, a standard media player, a stan-
dard web browser, a standard sound server and so on. While experienced users have no prob-
lems choosing one, beginners get confused. Totem? Mplayer? VLC? Xine? Desktop environ-
ments try to roll out their own, even when it’s so bad that it would actually be better to use the
competitor’s.

THE BUT-S 5

The lack of standards when it comes to general, high-level applications issues is not neces-
sarily a big hassle. Most distributions will install either just one, or install them all, so after a
few minutes of experimenting, the user could choose his own. But what do we do when we’re
dealing with more low-level apps?

I recently came across this problem when a friend of mine asked me for help. He would need
a client-server application. The client part of the application needed to ring at certain given
moments, and by 'ring’ I mean make a sound. In the end, this proved to be the most tricky part
of it. Some of those who would use it had ARTs installed. Others used esound. One was
working with software that needed low-latency so he was using the JACK sound server. Others
used none at all and simply used mplayer to play their sounds. Others didn’t like mplayer but
they just used XMMS since they didn’t rely on sounds anyway. Getting the software to play
something on every computer in that network without having the user mess up specifying a
command himself took us about two days to figure out (and write some 200 lines of code at
most), while coding the rest of the application took less than a day and involved way more code.

The point is, the only standard in multimedia seems to be OpenGL (which is actually used
in LSB), but there’s much more about multimedia out there. Choosing standards in all areas
would benefit end users.

4.3 System applications

Application executables have their own special places in Linux. The problem is, there are too
many places.

One may often find it confusing to see how some apps go in /bin, others in /usr/bin, others
in /usr/sbin, /usr/X11R6/bin, /usr/local/bin and so on. It’s very difficult to manage, and this
is often left to the decision of the one who writes the software and its install target in the make-
file, or to the decision of the packager. This makes applications dificult to manage and, at times,
can lead to confusions if they end up installed in a directory that is not in the PATH of the one
trying to execute it. Getting a general guideline (indispensable executables in /bin, X11 aplica-
tions in /usr/X11R6/bin and so on) would help managing all these files. A universal way of
installing binary packages would also be a good choice. This is already present in LSB, but the
acceptance of RPM is problematic. A completely new package manager is more likely to be uni-
versally accepted than Red Hat’s solution.

There are certainly more places where standards could be applied (the /dev hierarchy, usage
of the /proc system and so on). However, these have less impact on the destkop user than the
ones listed above and I'd rather avoid them.

5 The but-s

The first person who saw this document read it carefully two times and replied me with a single
phrase: “Alex, you’re kindda nuts, you know?”

The first objection you may have is that applying such strong guidelines when it comes to
Linux would kill off most of the distributions. Well to be sincere, I’'m fine with that. Dis-
trowatch features hundreds of Linux distributions. I myself use quite a few (Gentoo at home,
Programmer’s Backpack Live CD when I need to program somewhere else, GNUStep Live CD
for learning GNUStep and Objective-C) but this doesn’t change a fact: there are many distribu-
tions that just do the same thing. Those who are really original are the big players — Debian,
Fedora, SuSE, Gentoo, FreeBSD, NetBSD, OpenBSD (for servers), and there are a few distros
with a certain focus. Others do nothing but maybe provide a slight change in wallpaper and
appearance. What’s the point? I’d rather have 40 good distros, with some having a certain, par-
ticular purpose, instead of having 400 of which 40 are good, 300 do the same thing and 60 are
plainly bullsh...um, bad.

These guidelines don’t make all distributions the same. They just change focus on inovation
and/or originallity instead of bright wallpapers and fuzzy themes of the same desktop environ-
ment.

6 SECTION 7

Another question I was asked was “Are you expecting people who’ve been fighting vi vs.
emacs for twenty years to settle in Gnome vs. KDE?”. This question is missing the point. A
standard doesn’t mean that one is better than its competitors. When the Open Groups (Open
Software Foundation at the time) adopted Motif as a standard instead of OpenLook, it was the
most obvious example. Call me subjective but OpenLook was not nearly half as ugly and slow
as Motif — it just wasn’t supported anymore. It would be the same now: nobody would impose
anyone to install KDE if KDE were chosen as a standard. KDE would just be the one who guar-
antees certain things, in the same way that, for example, choosing emacs as a standard text
editor would guarantee you that you can run your Emacs-LISP scripts anywhere.

6 Ending

Summing up, there is already one example where standards led to a solid desktop environment.
Apple’s desktop environment on Mac OS has won many acclaims among developers, even among
those who didn’t really fancy Apple. Of course, the environment is not even half as dynamic as
the Linux environment is. However, shifting dynamism towards more useful purposes than re-
inventing the wheel, only with a different paint each time, would be a good thing.

Linux is a very good environment for innovation — it is a dynamic environment with many
users around the world. Simply setting a stable base for it would be enough to give it a big, big
boost. And general consistency is a first step. Thank you.

7 Credits

I don’t usually like big thank-you-s in the end, but this time I really feel like doing it. So, in no
particular order, if you enjoyed reading, you should thank:

e Sabina Munteanu for asking a lot of (what seemed to her as) stupid Linux-related ques-
tions when they were actually questions about “how do I do that? It says this in the
manual but it doesn’t work at all :-D)

e Ron Eddington for carefully pointing me out that CDE was never adopted as a standard,
it just ended up acting like one.

e Written with TeXmacs should say it all ;-)

